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ABSTRACT | Designers use third-party intellectual property

(IP) cores and outsource various steps in their integrated circuit

(IC) design flow, including fabrication. As a result, security

vulnerabilities have been emerging, forcing IC designers and

end-users to reevaluate their trust in hardware. If an attacker

gets hold of an unprotected design, attacks such as reverse

engineering, insertion of malicious circuits, and IP piracy are

possible. In this paper, we shed light on the vulnerabilities in

very large scale integration (VLSI) design and fabrication flow,

and survey design-for-trust (DfTr) techniques that aim at re-

gaining trust in IC design. We elaborate on four DfTr tech-

niques: logic encryption, split manufacturing, IC camouflaging,

and Trojan activation. These techniques have been developed

by reusing VLSI test principles.
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I . INTRODUCTION

Typically, an integrated circuit (IC) comprises a wide va-

riety of components, including from digital, analog, photo-

nic to microfluidic [1]. Sensors, actuators, and biological

interfaces are also being integrated into these ICs. On the

one hand, IC designs have been enabled by advances in

mixed system integration and the increase in the wafer

sizes (currently about 300 mm and projected to be 450 mm
by 2018 [1]), reducing the cost per IC. On the other hand,

support for multiple capabilities and mixed technologies

has increased the cost of owning an advanced foundry. For

instance, the cost of owning a foundry will be $5 billion in

2015 [2]. Consequently, only high-end commercial

foundries now manufacture high-performance, mixed

system ICs, especially at the advanced technology nodes

[3]. Absent the economies of scale, many of the design
companies cannot afford owning and acquiring expensive

foundries, and hence, outsource their fabrication process

to these ‘‘one-stop-shop’’ foundries.1

While such globalization of IC design flow has success-

fully ameliorated the design complexity and fabrication

cost problems, it has led to several security vulnerabilities

[4]. If a design is fabricated in a foundry that is not con-

trolled by the (fabless) design house, reverse engineering,
malicious circuit insertion/modification, and intellectual

property (IP) piracy are possible [3]. A rogue element in

the foundry or a malicious user can reverse engineer the

functionality of an IC/IP, and then steal and claim owner-

ship of the IP [5]. An untrusted IC foundry may overbuild

ICs and illegally sell these excess parts [6], [7]. Rogue

elements in the foundry may insert malicious circuits

(hardware Trojans) into the design unbeknownst to the
designer [8], [9]. Finally, an attacker can reverse

engineer an IC by depackaging and delayering it, imaging

the individual layers, stitching the images, and extracting

the netlist. This way, he/she can steal an IP or reveal

competitor’s trade secrets. Because of these attacks, the

semiconductor industry loses several billions of dollars

annually [10]. The underlying reason is that the designers
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have minimum control over their design in this
distributed, and potentially, vulnerable design and fabri-

cation flow.

While hardware security and trust is a relatively recent

but an important problem, a somewhat similar yet funda-

mentally different problem of manufacturing defects has

been extensively researched by very large scale integration

(VLSI) test researchers for the last few decades. We lev-

erage the knowledge gained from VLSI testing and apply it
to hardware security. On the one hand, while manufac-

turing defects are natural and unintentional, the attacks

outlined above are man-made, intentional, and meant to be

hidden. On the other hand, many concepts in VLSI testing,

such as justification and sensitization (see Section II), can

be adapted in the context of hardware security. Inspired by

the design-for-testability (DfT) solutions for better test-

ability of manufacturing defects, one can develop design-
for-trust (DfTr) solutions to detect and prevent these

attacks.

In this paper, we shed light on the vulnerabilities in the

VLSI design and fabrication flow and survey four DfTr

techniques. These DfTr techniques are as follows.

1) Logic encryption implements a built-in locking

mechanism on ICs to prevent reverse engineering

and IP piracy by a malicious foundry and user,
and hinder Trojan insertion by a malicious

foundry.

2) Split manufacturing splits the layout and manu-

factures different metal layers in two separate

foundries to prevent reverse engineering and pi-

racy by a malicious foundry.

3) IC camouflaging modifies the layout of certain

gates to deceive reverse engineers into obtaining
an incorrect netlist, thereby, preventing reverse

engineering by a malicious user.

4) Trojan activation inserts dummy scan flip-flops

(dSFFs) to manipulate the transition probabilities

and expose a Trojan that is hidden in low-activity

regions.

When these techniques are applied arbitrarily with no

consideration of the design structure, they fail to provide
the required levels of security. Consequently, they are easy

to break and provide confidential information to the at-

tacker. We also show that by defining appropriate security

metrics and incorporating techniques such as fault activa-

tion, sensitization, and masking, these DfTr techniques

can be made stronger, providing the security levels needed

to regain trust in hardware.

The paper is organized as follows. Section II describes
the VLSI test principles. Section III elaborates on the four

DfTr techniques, their security requirements, and the

shortcomings of the naive approaches. Section IV explains

how VLSI testing principles can help these DfTr tech-

niques in meeting their security requirements. Section V

provides a discussion on the DfTr techniques. Section VI

concludes the paper.

II . BACKGROUND: TEST PRINCIPLES
AND THEIR APPLICATIONS

In this section, we describe the VLSI test principles that we
will use to develop DfTr techniques [14].

• Test principle 1 (fault excitation): A stuck-at-v fault

at a site is excited when an input pattern justifies

that site to v.

• Test principle 2 (sensitization): A site is sensitized

to an output if every side input of every gate on a

path from the site to the output is justified to the

noncontrolling value of the gate. Sensitization of
an internal line l to an output O refers to the con-

dition (values applied from the primary inputs to

justify the side input of gates on the path from l to

O to the noncontrollable values of the gates) which

bijectively maps l to O, and thus, renders any

change on l observable on O.

• Test principle 3 (fault propagation): The effect of a

fault at a site propagates to an output if the input
pattern excites the fault and sensitizes the faulty

site to the output.

• Test principle 4 (fault masking): Multiple effects

of the same excited fault or multiple excited faults

mask each other when none of their effects mani-

fest at the outputs, as the errors cancel out.

• Test principle 5 (controllability): It is a measure

of difficulty of setting a wire to a desired value
(logic 1 or logic 0).

III . BASELINE DfTr TECHNIQUES

In this section, we focus on four DfTr techniques: logic

encryption, split manufacturing, IC camouflaging, and

Trojan activation. For each of these techniques, we de-

scribe the threat model and different design approaches

proposed in the literature, and introduce their security

criteria and metrics. In addition, for each technique, we

explain why naive approaches fail to meet the criteria,
motivating VLSI-testing-inspired DfTr approaches.

A. DfTr1: Logic Encryption
Logic encryption hides the functionality and the imple-

mentation of a design by inserting additional gates, re-

ferred to as key gates, into the original design. In order for

the encrypted design to exhibit its correct functionality

(i.e., produce correct outputs), a valid key has to be

supplied to the encrypted design (for example, loading the

key to a tamper-proof on-chip memory [15]). Upon ap-
plying an incorrect key, the encrypted design will ex-

hibit an incorrect functionality (i.e., produce incorrect

outputs).

Logic encryption of hardware does not mean encrypt-

ing the design file by a cryptographic algorithm; instead, it

means encrypting the hardware’s functionality. Research-

ers have previously used the term ‘‘logic obfuscation’’ [6],
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[7] for this purpose. Obfuscation of a hardware hides only

its functionality, but obfuscation does not prevent black-

box usage (obtaining an output from a hardware on apply-

ing an input) [16]. Logic encryption prevents this black-

box usage of the encrypted hardware in addition to hiding
its implementation. Hence, we use the term ‘‘encryption,’’

and not ‘‘obfuscation.’’

1) Threat Model: Logic encryption techniques can

thwart an untrusted foundry from illegally copying, re-

verse engineering, and overproducing the IC design [6],

[7]. Fig. 1 shows the threat model for logic encryption. The

IP provider and the designer are trusted. The attacker is in
the foundry. The designer encrypts the (security-critical)

modules using the proposed technique, synthesizes them

using trustworthy computer-aided design tools, and sends

the generated layouts to the untrustworthy foundry. The

foundry manufactures the encrypted IC and returns them

to the designer. The designer then applies the secret key

and makes the ICs functional. The designer or a trusted

third-party performs functional validation and manufac-
turing testing on this functional IC. Once the ICs pass the

tests, the functional ICs are packaged and sold. The secret

keys for an IC are stored in a tamper-proof on-chip mem-

ory, and thus, are assumed to be unrecoverable by a

malicious user.

We consider two types of attackers: a rogue element in

the foundry and a malicious user. In the first type, the

rogue element in the foundry has access to the layout files
(in standard GDSII format [2]) given to him/her for man-

ufacturing the IC. This attacker can pirate the IP and/or

overproduce IC. In addition, this attacker can analyze the

design to identify the structural behavior of the design,

thereby finding safe places to insert Trojans. In the second

type, a malicious user can buy the IC, depackage and

delayer it, image the individual layers, stitch the images,

and extract the gate-level netlist. This attacker can reverse
engineer an IC and pirate the IP.

Logic encryption prevents these attacks by encrypting

all or critical modules in a design. Since the design is

encrypted by the designer, without the secret keys, the

foundry cannot use any copies or overproduced ICs.

Furthermore, it prevents an attacker from analyzing the
structural behavior of the design, thereby hindering Trojan

insertion. Additionally, if the target IC is sold in the

market, an attacker can buy one of the functional ICs. In

this way, an attacker can gain access to good input/output

(I/O) pairs. Furthermore, the attacker can identify the

inputs of key gates through structural analysis of the

netlist.

2) Previous Work: Logic encryption can be broadly clas-

sified into two types: sequential and combinational. In

sequential logic encryption, additional logic (black) states

are introduced in the state transition graph [7], [11], [12].

The state transition graph is modified in such a way that

the design reaches a valid state only on applying a correct

sequence of key bits. If the key is withdrawn, the design,

once again, ends up in a black state.
In combinational logic encryption, xor/xnor gates are

introduced at random locations in the design to conceal its

functionality [6]. One of the inputs of these inserted gates

serves as the key input. One can configure these inserted

gates as buffers or inverters using these key inputs. The

values applied to these key inputs are the keys. To generate

unique keys per IC, [17] calibrates the xor/xnor gates

postfabrication by tweaking the threshold voltage of the
gates and introducing process variation sensors into a

circuit. To make the IC functional, these sensors have to be

configured by applying the secret key. Instead of xor and

xnor gates, one can also use multiplexers as key gates [18].

The select line of the multiplexers is connected to the key

inputs.

Memory elements may also be inserted into the design

[19]. The circuit will function correctly only when the
memory elements are programmed correctly. One can

Fig. 1. Logic encryption in an IC design flow [7], [11]–[13]. The top part depicts an IC design flow enhanced with logic encryption capabilities to

thwart IP piracy, IC overproduction, reverse engineering, and Trojan insertion [6], [7]. Before sending the design to an untrusted foundry,

the designer encrypts the design using logic encryption techniques. The foundry then manufactures this encrypted design. On receiving the

encrypted hardware, the IC designer activates it by applying the secret key and the IC is then sold in the market. The bottom part depicts the

threat model for logic encryption. In the untrusted regime, an attacker can obtain the encrypted netlist from the IC design, or by reverse

engineering the layout, mask, or a fabricated IC, and the functional IC from the market. Using this attack, the attacker can get a deciphered netlist

and make pirated copies, overproduce ICs, or insert Trojans at ‘‘safe’’ places.
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consider these programming bits as the secret keys, similar
to that of logic encryption. However, the insertion of

memory elements may incur significant power, area, and

delay overheads.

3) Criteria: A logic encryption technique should satisfy

two criteria: a) incorrect outputs should be produced on

applying an incorrect key; and b) an attacker should not be

able to retrieve the secret key.

Criterion 1 (50% Output Corruption): The objective of the

defender (designer) is to prevent his/her IP from being

copied by an attacker in the foundry and to prevent black-

box usage. The attacker does not know the secret key used

for encryption. Hence, he/she will apply a random key and

in turn expect the module to become functional (i.e., to

produce correct outputs). In the worst case, he/she has to
apply all possible keys. If the key size is sufficiently large

(say 128), then the number of possible key combinations

will be large (2128). Consequently, the brute force attack

becomes computationally harder. Thus, the objective of

the defender is to force the attacker to perform a brute

force attack. To achieve this objective, the defender has to

encrypt the module such that an attacker, with the

knowledge of the publicly available logic encryption
objectives and algorithms, is not able to obtain the correct

outputs by applying an incorrect key. This can be done by

minimizing the correlation between the corrupted and

original outputs, thereby maximizing the ambiguity for

the attacker.

The ambiguity for an attacker is maximum when 50%

of the outputs are corrupted upon applying a random in-

correct key (a mathematical derivation for this metric is
provided in [18]). One can quantify this metric using the

Hamming distance. The Hamming distance between the

correct output and the output on applying a random in-

correct key should be 50% on average. The Hamming

distance is defined as the number of output bits that differ

on applying a valid key versus an invalid key for the same

input. Ideally, 50% of the output bits should differ on

applying any invalid key for any input. In the case of logic
encryption, the Hamming distance metric is formally de-

fined as follows. For a circuit C which produces an output y
for an input x on applying the valid key, logic encryption of

C should satisfy

P
x2X

P
k2K;k 6¼valid key

HDðyvalid key;x; yk;xÞ

2jxj � 2jkj�1ð Þ�jyj � 100% ¼ 50% (1)

where X is the set of all inputs, K is the set of all possible

keys, and yðk; xÞ is the output vector on applying the key k
for the input x. jxj, jyj, and jkj denote the size of the input,

output, and key in bits, respectively.

Problem 1: Random insertion of key gates does not en-

sure an incorrect output is produced for an incorrect key,

let alone 50% output corruption.

Example 1: Let us consider the combinational logic en-

cryption technique proposed in [6] and [7]. In this tech-
nique, xor/xnor gates are inserted at random locations.

For instance, consider the C17 circuit shown in Fig. 2(a)

encrypted with one xor gate K1. The design will produce

the correct output on applying the correct key value K1 ¼ 0.

On applying an incorrect key ðK1 ¼ 1Þ, one expects incor-

rect outputs. For example, on applying the input pattern

01000, an incorrect output 00 is produced instead of the

correct output 10. Unfortunately, the design produces cor-
rect outputs for most of the input patterns even on applying

an incorrect key. For example, the input pattern 11100

produces the correct output 11 even when an incorrect key

is applied. In fact, this design produces an incorrect output

only for 12 out of the possible 32 input patterns. In other

words, the design produces correct outputs for 62.5% (20)

of the input patterns despite applying the incorrect key.

Thus, this encryption procedure is weak as it does not
ensure that incorrect outputs are produced for incorrect

keys, let alone the 50% output corruption criterion.

Criterion 2 (Difficult-to-Break Encryption): A logic en-

cryption should ensure the secrecy of the key even when

an attacker has access to good I/O pairs.

Fig. 2. Problems with naive logic encryption. (a) Circuit produces

correct outputs for 20 out of the 32 input patterns even on applying an

incorrect key to the key gate ðK1Þ. (b) An attacker can observe the key

bits at the outputs by applying the input pattern 100000 [13], [20].

Rajendran et al. : Regaining Trust in VLSI Design: Design-for-Trust Techniques

Vol. 102, No. 8, August 2014 | Proceedings of the IEEE 1269



Problem 2: Random insertion of key gates fails to ensure

the secrecy of keys.

Example 2: Consider the encrypted circuit shown in

Fig. 2(b). The key gates K1 and K2 are randomly inserted

in the circuit. By applying the input pattern 100000, an

attacker can observe the secret values of the key bits at the
outputs O1 and O2. Thus, random encryption fails to en-

sure the secrecy of key bits.

B. DfTr 2: Split Manufacturing
Split manufacturing has been proposed to thwart a

foundry from accessing the entire design information and
from stealing the design or inserting Trojans into them [3],

[21]. In split manufacturing [21], the layout of the design is

split into two: the front end of line (FEOL) layers and the

back end of line (BEOL) layers, which are then fabricated

separately in different foundries, as illustrated in Fig. 3.

The FEOL layers consist of transistors and lower metal

layers (for example, metal 4 and lower layers [21]) and the

BEOL layers consist of the top metal layers (for example,
metal 5 and higher layers [21]). This corresponds to the

partitioning of a gate level netlist into blocks where the

transistors and wires inside a block form the FEOL layers,

and the top metal wires connecting the blocks and the IO

ports form the BEOL layers. Postfabrication, the FEOL

and BEOL wafers are aligned, integrated, and tested [3],

[21], [22].

The asymmetric nature of the metal layers facilitates
split manufacturing. The top BEOL metal layers are thicker

and have a larger pitch than the bottom FEOL metal layers.

In one embodiment, the fabricated FEOL and BEOL wafers

are integrated using electrical, mechanical, or optical

alignment techniques and tested for defects by a system

integrator [21]. In another embodiment, the FEOL wafer is

fabricated in an advanced foundry and then sent to a

trusted second foundry where the BEOL layout is built on
top of it [21].

1) Threat Model: Split manufacturing may improve the

security of an IC as the FEOL and BEOL layers are

fabricated separately and combined postfabrication [3].

This prevents a single foundry (especially the FEOL foun-

dry) from gaining full access to the IC. The attacker in the

foundry that manufactures the FEOL wafer has the GDSII

layout file of the design, and can reverse engineer it to

obtain the gate-level netlist [5]. Thus, an attacker can al-

ways reverse engineer the FEOL parts of the circuits.

However, he/she does not have information about the
BEOL parts. Without the BEOL layers, however, the at-

tacker can neither identify the ‘‘safe’’ places within a cir-

cuit to insert trojans nor pirate the designs. The attacker in

the FEOL foundry gains knowledge about most of the

design (the transistors and the lower metal layers) except

for the missing BEOL connections. Once the attacker de-

termines these missing BEOL connections, he/she can

reconstruct the original design.

Example 3: Consider the 1985 International Symposium

on Circuits and Systems (ISCAS-85) combinational logic

benchmark circuit C17, shown in Fig. 4. It is partitioned

into partition A (light colored) and partition B (dark colored).

Typically, the wires within a partition (local wires except

Vdd and clock) are assigned to lower metal layers. The wires

that span the partitions and I/O ports are assigned to higher
metal layers. This makes routing easier [24]. The nets

connecting the input ports I1–I5 to the corresponding

Fig. 3. Split-manufacturing-aware IC design flow. The layout obtained from the traditional design flow is split into two parts: the FEOL part

containing the transistors and the lower metal layers, and the BEOL part containing the top metal layers. These parts are then fabricated in

two different foundries. Either the designer or the BEOL foundry assembles the FEOL and BEOL wafers into the final IC [3], [21].

Fig. 4. Secure processor design flow to thwart insider attacks. The

design team and the foundries are not trusted. The trusted security

and integration teams perform logic encryption, integration, and

Trojan detection (shaded blocks) by unlocking the design.
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inputs of the gates G1–G5 use the BEOL layers. The nets
connecting the output of gates G9 and G10 to output ports

O1 and O2, respectively, use the BEOL layers. The net that

connects the output of G7 to one of the inputs of G10 also

uses the BEOL layers. Without the BEOL connections, an

attacker in the foundry does not know the connectivity

among input ports, output ports, and partition pins.

2) Previous Work: In [25], an algorithm to select wires
for the BEOL layers is provided. A formal notion of an

attacker’s inability to figure out the missing BEOL con-

nections is provided. However, this approach has a signifi-

cant performance overhead, potentially superseding the

benefits of a high-end FEOL foundry. Furthermore, it

overlooks the vulnerability of the design to proximity

attack, when a design is synthesized by conventional phy-

sical design tools. One can also leverage the 3-D manufac-
turing technology where security-sensitive components

can be placed in one layer and manufactured in a trusted

low-end foundry, and other components of the design can

be placed in another layer and manufactured in an un-

trusted high-end foundry [26]. Feasibility of split manu-

facturing for analog designs has been demonstrated [27].

Criterion 3 (Resilience to Proximity Attack): The attacker
in the foundry should not be able to determine the missing

FEOL connections from the BEOL connections.

Problem 3: Naive split manufacturing is vulnerable to

proximity attack. This attack exploits the heuristic that

floorplanning and placement (F&P) tools use to reduce the

wiring (delay) between the pins to be connected [24]V
place the partitions close by and orient the partitions. This
heuristic of most F&P tools is a security vulnerability that

can be exploited by an attacker in the FEOL foundry who

does not have access to the BEOL layers. Thus, the attacker

simply makes the missing connections between the two

closest compatible2 pins.

Example 4: Consider the locations of partition pins and

IO ports of the F&P C17 benchmark as shown in Table 1.
Consider the input port PI1;IO;in,3 which is connected to pin

PI1;A;in in partition A. The locations of PI1;IO;in and PI1;A;in are

ð0; 6Þ and ð1; 6Þ, respectively. The distance between these

two pins is 1 unit. Now, consider another input port PI3;IO;in.

The distance between PI3;IO;in and PI1;A;in is 1.414 units.

Thus, the closest possible pin to PI1;A;in is PI1;IO;in. Hence, an

attacker will connect these two pins in the netlist for the

corresponding missing BEOL connection. Similarly, he/she
can connect all the other partition pins with their closest

pins and reconstruct the original design. An attacker can

perform a proximity attack to recover most of the missing

BEOL connections [23]. Thus, naive split manufacturing is

vulnerable to the proximity attack.

C. DfTr 3: IC Camouflaging
Camouflaging is a layout-level technique that hampers

an attacker from extracting a gate-level netlist of a circuit

from the layout through imaging different layers. In one

embodiment of IC camouflaging, dummy contacts are used

[28]. Contacts are conducting materials that connect two

adjacent metal layers or a metal layer 1 and poly. They pass

through the dielectric that separates the two connecting

layers. While a conventional contact (true contact) has no
gap, a dummy contact has a gap in the middle and fakes a

connection between the layers, as shown in Fig. 5. Such

dummy contacts are used to design standard cells that look

alike irrespective of their functionality. For example, nand

and nor standard cells can be designed to look alike using

dummy contacts. When deceived into incorrectly inter-

preting the functionality of the camouflage gate, the

attacker may extract a netlist that is different from the
original netlist.

1) Threat Model: To prevent reverse engineering, a

designer camouflages certain gates in the design.4 For ex-

ample, the or gate G7 in Fig. 6 is camouflaged. This design

with camouflaged gates is then manufactured at a foundry.

The manufactured IC is sold in the market. An attacker can

reverse engineer an IC by depackaging, delayering, imag-
ing the layers, and extracting the netlist. However, in the

extracted netlist, the functionality of the camouflaged

gates is unknown. For example, in Fig. 5, the functionality

of G7 is unknown and an attacker assigns an arbitrary two-

input function to it. Consequently, an attacker may obtain

an incorrect netlist. Additionally, if the target IC is sold in

the market, an attacker can buy one of them. In this way,

an attacker can gain access to good I/O pairs.

2) Previous Work on IC Camouflaging: An IC camouflag-

ing technique can leverage unused spaces in an IC and fill

2Two pins are compatible if one pin is the output of a gate or an input
port, and the other pin is an input of a gate or an output port.

3PNet;Partition;Direction denotes a partition pin or an IO port. Net is the
name of the wire in the original design. Partition represents either the
partitions A or B or the IO port. Direction of a pin can be either in or out.

Table 1 Proximity Attack on Split Manufacturing. X–Y Coordinates of the

Pins in Partitions A and B and IO Ports of F&P C17 Design Shown in Fig. 4.

The Coordinates Are Shown as Absolute Units for Ease of Understanding

4A designer does not camouflage all the gates in the design because of
the power, area, and delay overhead of the camouflaged gates.
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them with standard cells [29]. The outputs of these filler

cells will not drive any active logic. Hence, an attacker can

identify and discard them while extracting the netlist. One

can also camouflage a design by using programmable

standard cells [30]. Postfabrication, these cells will be

programmed using a control input. However, such control

inputs have to be stored on-chip which requires a tamper-
proof nonvolatile memory. Similar to introducing dummy

contacts, a designer can also create dummy channels,

which will result in nonfunctional transistors [31] and can

be used to deceive an attacker.

3) Criteria for IC Camouflaging: An IC camouflaging

technique should satisfy two criteria: a) incorrect outputs

should be produced on attempts to try the incorrect one of
many possible functionalities of a camouflaged gate; and

b) an attacker should not be able to retrieve functionality

of the camouflaged gates.

Criterion 4 (Output Corruption): The objective of the

defender (designer) is to prevent his/her IP from being

copied by an attacker in the foundry and to prevent black-

box usage. The attacker does not know the functionality of
the camouflaged gates. Hence, he/she will try one of the

many possible functionalities of each camouflaged gate and

in turn expect the design to become functional (i.e., to

produce correct outputs). In the worst case, he/she has to

perform a brute force attack by trying out all possible

functionalities of all camouflaged gates. The objective of
the defender is to force the attacker to perform a brute

force attack. Therefore, the defender needs the camou-

flaged design to produce incorrect outputs on incorrect

functionality assignment to camouflaged gates. A defender

has to camouflage the design such that an attacker, with

the knowledge of the publicly available IC camouflaging

objectives and algorithms, is not able to obtain the correct

outputs by trying an incorrect functionality. This can be
done by minimizing the correlation between the corrupted

and original outputs, and thus by maximizing the am-

biguity for the attacker similar to logic encryption and split

manufacturing. The optimal point is again where 50% of

the outputs are corrupted upon trying an incorrect

functionality.

Problem 4: Random selection of gates for IC camou-
flaging fails to ensure the production of incorrect outputs

for an incorrect functional assignment to camouflaged

gates.

Example 5: Consider the circuit shown in Fig. 7. The

camouflaged gate C1 can implement one of {xor, nand,

nor}. This circuit produces incorrect outputs for four out

of the 16 possible input patterns, because the output C1
does not corrupt the output O1 for most of the input

patterns.

Criterion 5 (Difficult-to-Break Camouflaging): A camou-

flaging technique should ensure that the functionalities of

the camouflaged gates should not be resolvable, even when

an attacker has access to good I/O pairs.

Problem 5: Random selection of gates for IC camouflag-

ing fails to ensure that the functionalities of the camou-

flaged gates are hardly resolvable.

Example 6: Consider the camouflaged gate C1 in Fig. 8.

The functionality of C1 can be resolved to be xor by ap-

plying 010XXXX at the inputs. This input pattern will

justify the inputs of C1 to 00 and sensitize the output of C1
to O1. If O1 is 0, then the functionality of C1 is resolved as

xor. Otherwise, the functionality of C1 can be resolved to

Fig. 6. IC camouflaging in an IC design flow. A design is synthesized into layout by using both regular standard cells and camouflaged

standard cells. This layout is manufactured to obtain the IC. An attacker buys the camouflaged IC and depackages it. He/she delayers and

images the metal layers and transistors. He/she then obtains the gate-level netlist by processing those images. However, the functionality of

camouflaged cells cannot be resolved. For example, the functionality of G7 cannot be resolved [41].

Fig. 5.Dummy contact-based IC camouflaging. (a) A logic gate with true

contacts. (b) A logic gate with dummy contacts. The top view, which is

used by an attacker in reverse engineering, is identical for both true

and dummy contacts [28].
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be nor by applying 110XXXX at the inputs. This input

pattern will justify the inputs of C1 to 10 and sensitize the

output of C1 to O1. If O1 is 0, then the functionality of C1 is
resolved as nor. Otherwise, the functionality of C1 is re-

solved as nand. Thus, a naive selection of gates for camou-

flaging may not offer security.

D. DfTr 4: Trojan Activation
Hardware Trojans inserted into a design at a foundry

can be identified from their malicious behavior or by their

additional power consumption [4], [32]–[34]. However,

most of the Trojans remain dormant and they get activated

only in rare conditions. Thus, to identify a Trojan one has

to increase the switching activity within the Trojan circuit.

This way a defender can activate the Trojan and observe its

malicious behavior or can increase its power consumption,
resulting in its detection [32].

1) Threat Model: As shown in Fig. 9, a designer synthe-

sizes the design and generates the layout. He then charac-

terizes its power and delay characteristics. An attacker in

the foundry can insert Trojans into the design. The manu-

factured ICs with Trojans are then sent to the designer.

The designer measures the power and delay characteristics
of the manufactured IC by applying input patterns and

compares them against the characterization. Any anomaly
is considered as Trojan. The designer can use statistical

and machine learning techniques to eliminate the effect of

process variations [34], [35].

2) Related Work: Trojans are detected by characterizing

the side channels such as power and delay on the golden

model of the IC and comparing it against the mea-

surements made on the manufactured IC. Based on the
assumption that Trojans consume additional power, mea-

surement of IC power dissipation can be used to detect

Trojans [36]. Circuit delay characteristics have been used

to detect Trojans [33], [35], [37]. While Jin and Makris

[35] and Rajendran et al. [37] measure the delay of paths in

the design and generate a delay fingerprint, Wang et al.
[33] propose a method that measures the delays of all

the paths using shadow latches. Potkonjak et al. [34] and
Wei et al. [38] present nondestructive techniques to detect

hardware Trojans in the presence of process variations

where each IC component (e.g., a gate or an interconnect)

has unique parameters. Unlike Salmani et al. [32] who use

switching power, the techniques proposed in [34] and [38]

use leakage power to detect Trojans. These techniques

combine algebraic, numerical, and statistical methods with

power and delay measurements to detect hardware
Trojans. Furthermore, on-chip sensors are being incorpo-

rated to aid Trojan detection techniques [39].

Criterion 6 (Sufficient Switching Activity by the Trojan): To

detect Trojans by activation or by power side-channel

analysis, a defender has to cause sufficient switching acti-

vity (for example,> 10�1) at the inputs of a gate to detect a

Trojan.

Problem 6: One cannot always guarantee sufficient

switching activity in all the gates. This is because certain

gates have a low probability of transition.5 Thus, in order

to maintain the stealthy nature, an attacker can connect

Fig. 9. Threat model for hardware Trojans. An attacker in the foundry

can insert Trojans. A defender can characterize the side channel of

the designs and compare it against the measurements made on the

manufactured IC [4], [32]–[34].

5Probability of transition (PTransition) of a gate is the product of
probability of obtaining a 1 and probability of obtaining a 0 at its output.

Fig. 8. Problem with IC camouflaging. C1 and C2 are camouflaged gates

that could implement one of {XOR, NAND, or NOR}. An attacker can

identify the functionality of C1 as XOR by applying 010XXXX at the

inputs and observing a 0 at O1. If he/she observes a 1, 110XXXX can be

applied from the inputs. If O1 is 0, the functionality of C1 is resolved as

NOR. Otherwise, the functionality of C1 is resolved as NAND. Similarly,

the functionality of C2 can be resolved [41].

Fig. 7. Problem with IC camouflaging. Camouflaged gate C1 can be

one of {XOR, NAND, NOR}. On incorrectly assigning the functionality

of the camouflaged gate, wrong outputs are produced for only

four out of 16 possible input patterns [41].

Rajendran et al. : Regaining Trust in VLSI Design: Design-for-Trust Techniques

Vol. 102, No. 8, August 2014 | Proceedings of the IEEE 1273



the inputs of a Trojan to the outputs of gates which have a
low probability of transition.

Example 7: Consider the design shown in Fig. 10. T1 is the

Trojan gate. The transition probability of the gates in the

design is listed in Table 2. In this design, the inputs of

the Trojan gate are connected to the output of the gates

G4 and G5. This causes PTransition to be 615/16384,

which is less than the required value ð> 10�1Þ. In this
way, the Trojan remains stealthy and can circumvent the

Trojan detection technique.

IV. STRENGTHENING DfTr TECHNIQUES
THROUGH VLSI TESTING PRINCIPLES

In this section, we present the application of VLSI test

principles in the context of hardware security. First, we
provide a background on a set of test principles that can be

leveraged for hardware security. Then, we show how the

DfTr techniques presented in Section III can be strength-

ened by leveraging these test principles.

As listed in Table 3, these principles can be utilized in
order for the following to occur.

• Control the corruption at the outputs in three DfTr

techniques: 1) in case of logic encryption, an incor-

rect key will result in incorrect outputs; 2) in case

of split manufacturing, an incorrect BEOL connec-

tion will result in a design that produces incorrect

outputs; and 3) in case of IC camouflaging, an

incorrect assignment of a function to a camouflaged
gate will result in incorrect outputs. The corre-

sponding DfTr technique can then judiciously

1) insert the logic gates at proper locations; 2) swap

block-level pins in split manufacturing; and 3) se-

lect the gates to be camouflaged. This requires the

modeling of the injected corruption (corresponding

to incorrect key, incorrect BEOL connections pins,

or ambiguity of camouflaged gates) as faults, and
making the DfTr decisions so as to favor the acti-

vation and propagation of these ‘‘faults.’’

• Make sure that the DfTr technique is difficult to

break. This enhancement applies to logic encryp-

tion, where encryption key needs to be protected,

and to IC camouflaging, where the ambiguity

regarding the one-of-many functionalities of

camouflaged gates in the reverse-engineered net-
list needs to be maintained.

• Convert low-activity regions to high-activity re-

gions. In case of Trojan activation, the increased

switching activity in the high-activity region ex-

poses the Trojan.

A. Solution to Problem 1: Fault-Analysis Driven
Logic Encryption

Logic encryption should be performed by inserting the

key gates at carefully selected locations in the design so

that 50% of the output bits are corrupted when an incor-

rect key is applied. The following observations relate logic

encryption and fault analysis in IC testing and can be

leveraged to guide the insertion of xor/xnor key gates for

this purpose.

Connection to Test Principle 1: Application of a wrong key

is analogous to excitation of a fault. For a wrong key, either

a stuck-at-0 (s-a-0) or stuck-at-1 (s-a-1) fault will get ex-

cited, when xor/xnor gates are used for encryption. This

is illustrated for the C17 circuit encrypted with one xor

gate ðE1Þ as shown in Fig. 11(b). If a wrong key ðK1 ¼ 1Þ is

applied to the circuit, the value of net B is the negated

value of net A. This is the same as exciting an s-a-0 (when
A ¼ 1) or s-a-1 (when A ¼ 0) fault at the output of G7, as

shown in Fig. 11(a).

Connection to Test Principle 3: Corruption of an output

due to a wrong key is analogous to the propagation of an

excited fault to this output. This is illustrated for the

circuit shown in Fig. 11(b). Let a wrong key ðK1 ¼ 1Þ be

Fig. 10. Problem with Trojan detection by activation. The inputs of a

Trojan are connected to gates with low switching probability. Thus, one

cannot cause sufficient switching activity within the Trojan to detect it.

Table 2 Probability of Obtaining a 0 ðP0Þ, Probability of Obtaining a 1 ðP1Þ,
Transition Probability ðPTransitionÞ, and Average Number of Input Patterns

Required to Obtain a Transition at the Output of the Gates Shown in

Fig. 10. The Probabilities Are Calculated Based on the Assumption That

Probabilities of Obtaining 0 and 1 ðP0;P1Þ at a Primary Input Are 0.5 and

0.5, Respectively [32]
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applied to the circuit. For the input pattern 00000, an s-a-0

fault gets excited at the output of E1 and propagated to
both outputs. The value at the output of the gate E1 is 0

instead of 1, and the output is 11 instead of the correct

output 00. For the input pattern 01110, even though the

s-a-0 fault gets excited at the output of E1, the output is

00, which is the same as the functional output, as the fault

effects have been blocked.

Connection to Test Principle 4: Cancellation of the effect
of multiple wrong key bits is analogous to the masking of

multiple excited faults in a faulty design. Consider the

encrypted circuit in Fig. 11(c). When key bits (K1;K2, and

K3) are 000, the correct functional output is 00 for the

input pattern 00000. However, if the key bits are 111

(wrong key), the effect introduced by the xor key gate E1

is masked by the xor key gates E2 and E3, resulting in the

undesired correct output 00.

Meeting Criterion 1: Insert xor/xnor gates such that a

wrong key will affect 50% of the outputs. In terms of fault

simulation, this goal can be stated as finding a set of faults,

which together will affect 50% of the outputs when

excited. To insert an xor/xnor gate, we need to determine

the location in the circuit where, if a fault occurs, it can

affect most of the outputs for most of the input patterns.

To determine this location, we use the concept of fault
impact defined by (1). From a set of test patterns, we

compute the number of patterns that detect the s-a-0 fault

(number of test patternss�a�0) at the output of a gate Gx,

and the cumulative number of output bits6 that get af-

fected by that s-a-0 fault (number of O/Pss�a�0). Similarly,

we compute number of test patternss�a�1 and number of
O/Pss�a�1

FaultImpact

¼ ð# of test patternss�a�0 � # of O/Pss�a�0Þ
þ ð# of test patternss�a�1 � # of O/Pss�a�1Þ: (2)

Upon inserting an xor/xnor gate for encryption at the

location with the highest fault impact, an invalid key will

likely have the most impact on the outputs (i.e., the wrong

outputs appear). Upon inserting a sufficient number of

6In sequential circuits, one should calculate the fault impact assuming
that all the flip-flops are scan flip-flops and attacker has access to scan
chains. Hence, each scan flip-flop is considered as a pseudo primary input
and pseudo primary output.

Fig. 11. Solution to problem 1 [20]: By relating logic encryption and fault analysis via testing principlesVfault excitation, propagation, and

maskingVa designer can find optimal places in a design to insert the key gates to satisfy criterion 1. (a) A faulty circuit. (b) An encrypted circuit

with a wrong key ðK1 ¼ 1Þ equivalent to the faulty circuit. (c) A circuit encrypted with three XOR gates (E1;E2, and E3).

Table 3 Enhancing DfTr Techniques Using Test Principles. The Number Within the Parentheses Indicates the Criterion/Test-Principle Number
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xor/xnor gates, the 50% output corruption will be satis-
fied via a heuristic approach [18], [20].

B. Solution to Problem 2: Difficult-to-Break
Logic Encryption

To prevent attacks that aim at leaking the logic en-

cryption key, key gates have to be inserted judiciously such

that the attacker should be forced into decrypting the key

bits using brute force. This way, even with full access to

the netlist the attacker will not be able to circumvent the

defense.

Connection to Test Principle 2: A key bit can be sensi-

tized to an output only if the side input of every gate in

the path to the output can be justified to a noncontrolling

value. However, if a side input is not justifiable to a

noncontrolling value due to an interference from another

key bit, the target key bit cannot be sensitized to an

output. Consequently, an attacker will not be able to
decipher its value without knowing the value of the other

key bit.

Consider the example circuit in Fig. 12 which is

functionally identical to circuit in Fig. 2(b) but with the

two key gates K1 and K2 inserted at different locations.

The attacker cannot sensitize K1 to an output as the side

input of G4 cannot be set to 0 (noncontrolling value of

an or gate). This is because an attacker neither knows
the value of K2 nor can control K2. Similarly, K2 cannot

be sensitized to an output due to K1. The attacker then

has to decrypt these key bits together rather than

individually.

Meeting Criterion 2: Logic encryption can be strength-

ened by inserting key gates with complex interferences

among them. An interference exists between two key gates
if the value of one key bit cannot be propagated or sensi-

tized without controlling or knowing the value of the other

key bit. By inserting the key gates such that they block each

other’s path, and/or they converge in some other gate, a

difficult-to-break logic encryption that forces the attacker

to perform brute force attempts can be implemented [13].

This will prevent linear complexity attacks that target
individual key gates and decipher individual key bits one at

a time.

C. Solution to Problem 3: Fault Analysis Driven
Split Manufacturing

Proximity attack can be overcome by rearranging the

pins such that they are no longer closest to the pins that

they are supposed to connect. A proximity attacker will

thereby be deceived into making the wrong BEOL connec-
tions. The objective of a designer then is to swap a suf-

ficient number of pins such that the functionality of the

deceiving netlist7 differs from that of the original netlist.

This objective can be quantified using the Hamming dis-

tance metric.

In the context of split manufacturing, the Hamming

distance is defined as the number of output bits that differ

on applying an input to the original design versus to the
design with a pair of FEOL pins swapped. Ideally, 50% of

the output bits should differ on applying any input for any

swapped pin pair. This metric is formally defined as fol-

lows. For a circuit C which produces an output y for an

input x on applying the valid key, split manufacturing of C
should satisfy

P
x2X

P
m2M;m02M;m 6¼m0

HDðym;m0;x; ym0;m;xÞ

2jMj
2 � 1

� �
�jyj

� 100% ¼ 50% (3)

where X is the set of all inputs, M is the set of FEOL pins,

yðm;m0; xÞ is the output vector on applying the input x
where the FEOL pins m and m0 are connected correctly,
and yðm0;m; xÞ is the output vector on applying the input x
where the FEOL pins m and m0 are swapped. jxj and jyj
denote the size of the input and output in bits, respec-

tively. jMj is the number of FEOL pins.

To find a swapping pin for a target pin, similar to an

attacker, the defender can build the list of candidate pins

for that target pin. Then, he/she can randomly select the

swapping pin from that list. Unfortunately, such random
selections might not guarantee that the attacker will get a

wrong output on making a wrong connection. Hence, one

can use VLSI test principles to select the swapping pin for a

target pin in order to achieve the 50% output corruption

criterion, as illustrated in Fig. 13.

Connection to Test Principle 1: The fact that different

values on the swapping and the target pin introduce an
error is analogous to the excitation of a fault. Ideally, such

pins must be swapped to introduce errors. Otherwise, the

resulting design, even with the wrong connections, will

still produce mostly correct outputs.
Fig. 12. Solution to problem 2 [13]: An attacker cannot sensitize the

effect of key bits K1 and K2 individually to the outputs. Hence, the

attacker has to determine the values of K1 and K2 by brute force effort. 7A deceiving netlist is created by the defender by swapping the pins.
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Connection to Test Principle 3: Corruption of an output

due to two swapped pins is analogous to the propagation of

an excited fault. Ideally, swapping should be done so that

many outputs are corrupted (fault propagates to many

outputs).

Connection to Test Principle 4: Cancellation of the effect
of multiple swapped pin pairs is analogous to the masking

of multiple excited faults. Sometimes, logical values cor-

rupted by swapping pins in partition A can be restored to

their original value because of swapping pins in partition B.

Meeting Criterion 3: Instead of randomly selecting the

swapping pin, the pin that affects most of the outputs for

most of the input patterns on swapping is selected. This
accounts for fault activation, propagation, and masking

scenarios. We define the fault impact metric, to select a

swapping pin Y for a target pin X

FaultImpactX;Y¼
X# of test patterns

i¼1

# of corrupted outputs:

(4)

One can swap the target pin X with the swapping pin Y in

the netlist and identify the cumulative sum of the cor-

rupted output bits over a set of random test patterns. Fault

impact quantifies the effect of swapping on the outputs of
the design. Fault impact metric is used to select the swap-

ping and target pins. The selected pins are then swapped

and the netlist is updated. The above steps are repeated

until all the partition pins and input ports are swapped

or the Hamming distance value reaches 50%. For the

ISCAS-85 benchmark designs, a designer achieves the 50%

Hamming distance metric by swapping only a small set of

pins (G 20 for most designs) via a heuristic approach [23].
Apart from fault-analysis-based pin swapping, one can

make proximity attack difficult by manufacturing FEOL

layers to metal layer 1 and below in the untrusted FEOL

foundry [40]. However, this will tremendously increase

the cost of trusted BEOL foundry, as it has to support more

metal layers.

D. Solution to Problem 4: Fault Analysis Driven
IC Camouflaging

IC camouflaging should be performed by carefully se-

lecting the logic gates to be camouflaged with the ultimate
goal of meeting the output corruption criterion. The fol-

lowing observations relate IC camouflaging and fault ana-

lysis in IC testing and can be leveraged to guide the

selection of gates to camouflage for this purpose.

Connection to Test Principle 1: Attempting the wrong

functionality of a camouflaged gate is analogous to excita-

tion of a fault. For the wrong functionality, either an s-a-0
or s-a-1 fault may get excited. This is illustrated in Fig. 14

for camouflaged gate C1 that could implement one of many

functionalities of xor, nand, or nor. The example pattern

justifies the inputs of C1 to 01; if the actual functionality of

C1 is xor/nand and the attempted (by the reverse engi-

neer) functionality is nor, an error is introduced. The

same error is introduced when an s-a-0 at the output of C1

is excited. On the other hand, if the actual functionality is
xor and the attempted functionality is nand, this pattern

fails to introduce any corruption; a different pattern is

needed in that case.

Connection to Test Principle 3: Corruption of an output

due to attempting a wrong functionality of a camou-

flaged gate is analogous to the propagation of an excited

fault. This is illustrated for the circuit shown in Fig. 7,
where the corruption is propagated from the output of

C1 to O1.

Meeting Criterion 4: Select gates to be camouflaged such

that attempting wrong functionalities will affect 50% of

the outputs. In terms of fault simulation, this goal can be

stated as finding a set of faults, which together will affect

Fig. 13. Solution to problem 3 [23]: Applying IC testing principles to

split manufacturing. (a) Pin that has a logical value opposite to that

of the swapped pin is preferred (fault excitation). Values at PG1;A;out

and PG2;A;out differ only when X ¼ Y ¼ 0; Values at PG2;A;out and G3;A;out

differ in two cases: X ¼ 1, Y ¼ 0 and X ¼ 0, Y ¼ 1. Thus, PG3;A;out is

selected as the swapping pin for PG2;A;out. (b) If PG1;A;out is selected as the

swapping pin for PG2;A;out, the wrong value will propagate only when

the other input of G4 is 1. However, if PG3;A;out is selected as the

swapping pin, the buffer G5 will always propagate the wrong value

(fault propagation). (c) The logical error introduced by swapping

PG1;A;out and PG2;A;out is cancelled by swapping PG3;B;out and PG4;B;out

(fault masking).

Fig. 14. Solution to problem 4 [41]: Camouflaged gate C1 can

implement one of {XOR, NAND, or NOR}. Incorrect values are always

propagated to the output.
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50% of the outputs when excited. For this purpose, we
define the output corruption metric

OutputCorruptibility ¼
X# of test patterns

i¼1

# O/Ps;

with ambiguity activated and propagated: (5)

Camouflaging the gates with the highest output corrupt-

ibility values is expected to reduce the usefulness of the

reverse engineered netlist [41].

E. Solution to Problem 5: Difficult-to-Break
IC Camouflaging

Similar to implementing a difficult-to-break logic en-

cryption, the attacker should be forced into using brute

force in his/her attempts to identify the functionality of the
camouflaged gates. Thus, the gates to be camouflaged

should be selected judiciously; interference between the

camouflaged gates increases the brute force effort for the

attacker, forcing him/her to target camouflaged gates in

large groups rather than individually.

Connection to Test Principle 2: An attacker can determine

the functionality of a camouflaged gate by sensitizing its
output to a primary output of the design. A gate’s output

can be sensitized to an output only if the side input of

every gate in the path to the output can be justified to a

noncontrolling value. However, if a side input is not jus-

tifiable to a noncontrolling value due to the ambiguity

stemming from another camouflaged gate, the target gate’s

output cannot be sensitized to an output. Consequently, an

attacker will not be able to resolve the functionality of the
target camouflaged gate without knowing the functionality

of the other camouflaged gate.

Consider the example circuit shown in Fig. 15 with two

camouflaged gates C1 and C2. The attacker cannot sensi-

tize C1’s output to a primary output as the side input of G7

cannot be set to 1 (noncontrolling value of a nand gate).

This is because an attacker neither knows the functionality

of C2 nor can control C2. Similarly, C2’s output cannot be
sensitized to a primary output without knowing the func-

tionality of C1. Thus, an attacker cannot identify the func-

tionalities of C1 and C2 without brute force effort.

Meeting Criterion 5: IC camouflaging can be strength-

ened by creating complex interferences among the camou-

flaged gates. By selecting the camouflaged gates such that

they block each other’s path, and/or they converge in some
other gate, a difficult-to-break IC camouflaging that forces

the attacker into brute force can be implemented. This

prevents linear complexity attacks that target individual

camouflaged gates and identify individual gate function-

alities one at a time [41], [42].

F. Solution to Problem 6: Increased
Switching Activity

To increase the transition probability (PTransition) of a

gate, one can introduce dSFFs [32] at its outputs. Through

the dSFFs, one can easily control the input of the gate,

increased PTransition. This results in increased switching

activity stemming from the Trojan circuit, causing the

Trojan to consume more power. A defender can easily

identify this additional power consumption during side-
channel measurements and detect the Trojan. The dSFFs

are used only when the designer needs to measure the side

channels. During normal mode, they are bypassed and

hence do not alter the functionality of the design. For this

purpose, dSFFs are accompanied by a bypass gate (usually

and or or).

Connection to Test Principle 5: Since the dSFFs are di-
rectly accessible to the designer through the scan chains, a

designer can easily control them, injecting transitions.

Hence, the PTransition value of dSFF is 0.25, which is the

same as that of the primary input. Adding the dSFF to a

wire increases its PTransition value as well as the that of the

following wires. This results in increased switching activity

in the design, thereby enabling Trojan detection.

Consider the circuit shown in Fig. 16. Here D1 is the
dSFF gate and G8 is the bypassing gate. During normal

Fig. 15. Solution to problem 5 [41]: An attacker cannot identify the

functionalities of the camouflaged gates C1 and C2 without brute

force effort.

Fig. 16. Solution to problem 6 [32]. Inserting dSFF ðD1Þ increases

the transition probabilities of G4 and G5. This results in increased

switching activity, enabling Trojan detection. G8 is the bypassing gate.
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mode, D1 is set to zero, retaining the original functionality

of the circuit. When the designer wants to test for Trojans,

he/she can set the desired input patterns at D1. Table 4

shows the PTransition values of the gates before and after

dSFF insertion. It can be seen that the PTransition value of

all the gates is greater than 0:1 after dSFF at their outputs.

Meeting Criterion 6: A designer can increase the
PTransition value of a gate by inserting dSFF at its output

along with the bypassing gate. On inserting a sufficient

number of dSFFs, one can guarantee that all the gates in

the design will have PTransition value greater than the de-

sired value (for example, 0:1). An algorithm to insert

dSFFs at optimal locations to have increased PTransition

with minimal power, area, and delay overhead is given in

[32]. While dSFFs are used to increase the sensitivity of
Trojans to switching power, one can also use them to

deliver input patterns that maximize the sensitivity of

Trojans to leakage power [43].

V. DISCUSSION

A. Computational Complexity of DfTr Techniques
DfTr techniques are computationally intensive because

most of them use automatic test pattern generation
(ATPG), which is an NP-complete problem [14]. However,

efficient heuristics developed for practical circuits reduce

this complexity to polynomial in the number of gates in the

circuit [44]. Table 5 lists the complexity of DfTr tech-

niques. In the case of logic encryption and camouflaging,

the complexity is polynomial in the number of key gates or

the number of gates to be camouflaged. However, the

number of key gates or the number of gates to be cam-

ouflaged is relatively small (for instance, 128), making

these techniques practical. In the case of proximity attack,

the complexity is quadratic in the number of FEOL pins.
Even though there may be thousands of FEOL pins, if not

millions, it does not deter an attacker from applying the

proximity attack. In the case of dSFFs, the complexity is

linear in the number of gates in the design.

Furthermore, one does not need to apply logic encryp-

tion and camouflaging techniques to the entire chip. For

example, in the case of processors, one can apply these

techniques to only the controller units. Without the con-
troller unit, an attacker cannot compute [45].

B. Unique Unlock Keys Per Chip for
Logic Encryption

In case of logic encryption, a designer should ensure

that each chip has its own unlock key. Otherwise, a ma-

licious user can use the key of one chip to unlock its

pirated copies. In order to generate unique unlock keys per

chip, one can leverage physical unclonable functions

(PUFs). These are specialized circuits that leverage process
variations to generate different outputs for the same set of

inputs. One class of PUFs is called weak PUFs, which pro-

duce a unique signature per chip [46].

Table 4 The PTransition Values of the Gates in the Design Shown in Fig. 16

Before and After dSFF Insertion. Gates With Unchanged PTransition Values

Are not Listed

Fig. 17. Generating unique keys per chip using weak PUFs for

logic encryption.

Table 5 Computational Complexity of DfTr Techniques
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Logic encryption can be coupled with weak PUFs to
generate unique unlock keys per chip, as shown in Fig. 17.

A designer encrypts a design using logic encryption. The

key to unlock this design is called ‘‘design unlock key.’’ The

designer instantiates a weak PUF circuit in the IC along

with the encrypted design, and sends the IC for

fabrication. From the manufactured IC, the designer reads

out the ‘‘chip key’’ produced by the weak PUF circuit. After

this, the readout circuit is disabled. Because of the weak
PUF circuit, each chip has its unique chip key. The

designer xors the chip-key with the design unlock key to

compute the ‘‘chip unlock key.’’ The chip unlock key is

given to the user who applies it to his/her chip to make it

functional.

A malicious user cannot use his/her chip unlock key on

a different chip, as that chip will have a different chip key

because of the weak PUF circuit. In addition, the user
cannot read out the chip key, as the readout circuit is

disabled by the designer. Thus, by utilizing weak PUFs, a

designer can produce unique unlock keys per chip.

C. Which DfTr Techniques Should an IC
Designer Use?

An IC designer can select any of the DfTr techniques

depending on the trusted/untrusted entities in the IC de-
sign flow and the possible attacks that need to be thwarted

(i.e., the threat model). An IC designer can use Table 6 as a

guideline for selecting the appropriate DfTr technique(s).

Logic encryption and split manufacturing techniques

provide an indirect protection against hardware trojans.

Without the key or BEOL connections, a rogue element in

the foundry will be unable to perform structural analysis to

accurately identify safe places in the design to insert
Trojans. Logic encryption protects the design IP against

piracy and reverse engineering, and overbuilt ICs because,

without the key, the chip will be nonfunctional, and thus,

useless. Split manufacturing assumes the untrusted foun-

dry but trusted end-user model; missing BEOL connec-

tions at the untrusted foundry will provide protection

against IP piracy and IC overbuilding, but reverse engi-

neering by end users will expose these missing connec-
tions.

IC camouflaging assumes the trusted foundry but

untrusted end-user model; functionality of camouflaged

gates, which is unknown to the end user, will provide

protection against IP piracy and reverse engineering, but

the dummy/real contact information that is available at the

foundry may be used to circumvent the camouflaging

technique, if the foundry is untrusted. Trojan activation
only targets Trojans inserted at the foundry by increasing

the switching activity within the circuit. Designers have to

choose a set of techniques that suit their business model.

Using more than one defense techniques will provide
layers of defense against a variety of attacks.

VI. SUMMARY AND CONCLUSION

In this paper, we elaborated on four DfTr schemes: logic

encryption, split manufacturing, IC camouflaging, and

Trojan activation. We outlined various different threat

models, ranging from untrusted foundry to untrusted end-

user, as well as DfTr techniques as a defense against such

threats. Designers have to choose a set of techniques that

suits their business model. Though using more than one
defense technique will provide layers of defense against a

variety of attacks, a DfTr technique suitable for one threat

model may not be suitable for another one.

We described not only the basic DfTr techniques, but

also additional ways to further strengthen them via the use

of a few basic VLSI test principles. By defining and quan-

tifying security metrics and deciphering the relationship

between the fundamentals of these DfTr techniques and
VLSI testing principles, we show that these techniques can

be enhanced through the use of VLSI testing tools. Fur-

thermore, these techniques have to be reinforced with

mathematical proofs.

In summary, this paper linked VLSI testing with hard-

ware security, and thereby will 1) introduce hardware

security issues to the test community and elicit how rele-

vant the problems are to VLSI testing; 2) introduce the
hardware security and trust community how VLSI testing

tools [47], [48] and techniques can be leveraged for

enforcing security; and 3) motivate computer-aided design

tool developers to create dedicated tools to facilitate the

manufacturing of trustworthy ICs. h
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